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ABSTRACT

We demonstrate a three stage procedure for mine detection. The �rst phase locates plausible candidates
through a series of hypothesis tests. The second state �nds the globally optimal convex set containing each
candidate using \coarse-to-�ne" dynamic programming. The third stage re�nes the mine shape estimates using
the knowledge contained in a mine-shape library.
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1 Introduction

In this document we describe our work on mine detection in which, given an optical digital image of a scene, we
try to locate and classify the mines that are present. We assume that in our images a mine appears as a region
of comparatively brighter pixels (or darker pixels in some imagery), the region belonging to a known library of
possible shapes. Nothing is assumed about the possible orientation or location of the shapes and we make only
minimal assumptions regarding their size.

Let X be the lattice of pixel locations and f(x), x 2 X be the corresponding vector of grey-level intensities.
Suppose the possible mine shapes are parametrized by some set �, so � 2 � de�nes shape type, location, and shape
parameters (eg. circle, center, radius) but not parameters relating to grey-level. For � 2 � we de�ne I(�) � X to
be the interior of the region parametrized by � and let O(�) � X be a small \band" around I(�). We assume that
the grey-level is more or less constant across the I(�) and O(�) for any mine in the image.

For any � 2 � we de�ne

mI =
1

jIj

X
x2I

f(x)

mO =
1

jOj

X
x2O

f(x)

s2 =

P
x2I(f(x)�mI)

2 +
P

x2O(f(x)�mO)
2

jIj+ jOj � 2

where I = I(�) and O = O(�). We then de�ne the contrast statistics

C(�) =
mI �mO

s
(1)

C(x) = max
�:x2I(�)

C(�) (2)
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It is intuitively clear that, under suitable assumptions, points lying in the interior of mines will be local optima of
C(x) and for these interior points, the maximizing � in the de�nition of C(x) will be the true mine shape. Given
these observations we propose the following idealized recognition strategy. For each x 2 X we compute C(x) and
if C(x) > � , for some threshold � , we say we have recognized a mine and let the maximizing � be the estimated
mine shape.

The practical challenges in performing our procedure are not to be dismissed, however. It is computationally
burdensome to compute C(x) at a single location and the procedure, as stated, is certainly infeasible. We now
describe a three step method designed to approximate this scheme.

In the �rst stage (Section 2), we visit every site, x, in the image in search of candidates worthy of further
consideration. At each site we consider a small number of data points near x. If one can argue that this data is
highly unlikely when C(x) > � , the site is rejected from further consideration. Otherwise we consider a similar
test based on more data thus having greater statistical power yet demanding greater computational expense. We
continue in this manner until a test is failed or all tests are passed, in which case the candidate is deemed worthy
of further consideration.

The second stage (Section 3), which is really the heart of our algorithm, begins with the observation that our
possible mine shapes (circle, ellipse, parallelogram etc.) are a subset of the class of convex sets. We then seek
to estimate an approximation to the optimal mine boundary by maximizing an approximation to C(�) over the
class of convex sets containing x. Due to the grammatical nature of the class of convex sets, we can compute both
the globally maximal value of the contrast measure and the associated convex set with a variation on dynamic
programming. We use the convex set estimate as input into the third stage.

In the third stage (Section 4), we approximate C(x) itself for the surviving candidates. For each possible shape,
we use our convex set estimate to determine starting parameters (e.g. center, orientation, major and minor axes
for an ellipse) and proceed to optimize over these parameters using a local search technique. The success of this
phase relies heavily on having a good estimate to begin with so the previous phase in indispensable. Our estimate
of C(x) is then the maximum value we can achieve by optimizing C(�) over �. If our estimate of C(x) is less than
� we reject the candidate; otherwise we classify it according to the shape associated with the optimizing value of
�.

Finally, Section 5 details our experimental results.

2 Locating Candidates

We demonstrate here how to prune the large number of possible mine locations down to a computationally feasible
size.

Let

D(x; r) = fy 2 X : jy � xj � rg

A(x; r1; r2) = fy 2 X : r1 < jy � xj � r2g

and choose rmax; Rmin; Rmax so that for every mine hypothesis � 2 � there is an x 2 X satisfying

D(x; rmax) � I(�) (3)

I(�) \A(x;Rmin; Rmax) = ; (4)

(the situation of Eqns. 3-4 is depicted in Fig. 1).

De�ne the contrast measure C0(x) using I = D(x; rmax) and O = A(x;Rmin; Rmax) in Eqn. 1. Note that when
the conditions of Fig. 1 are satis�ed, C0(x) is a good approximation to C(x). We will test the hypothesis that
C0(x) � � at every location in the image. Since the conditions of Fig. 1 are satis�ed for at least one x for each

2



mine

I(x)

O(x)

Figure 1: A test consists of choosing a collection of points from the \inside" and \outside" regions. The contrast
statistic Ĉ0(x) is formed in an attempt to defeat the hypothesis that a mine is present.

mine, and we have assumed that C(x) > � , we can control the probability of false rejection of a mine. At this
stage we concede a certain number of false positives since there will be regions of high contrast but no discernible
mine shape and we cannot hope to reject these without an estimate of the region shape.

Let I(x) and O(x) be N -point subsets of D(x; rmax) and A(x;Rmin; Rmax) and de�ne Ĉ0(x) as in Eqn. 1. Under
normal and independence assumptions Ĉ0(x) has approximately a noncentral t distribution

Ĉ0(x) �

r
2

N
t(C0(x)

s
N

2
; 2N � 2)

where the 1st argument is the noncentrality parameter and the 2nd argument is the degrees of freedom. Thus we
can choose t(�) such that

P (Ĉ0(x) > t(�)) = 1� �

when C0(x) > � . Our objective is to reject as much of the image as possible with a minimum of computation e�ort.
To this end we de�ne K (� 5) uniformly distributed nonintersecting subsets of D(x; rmax) and A(x;Rmin; Rmax),
fIk(x); Ok(x)g

K
k=1, so that jIk(x)j = jOk(x)j = Nk. At each location in the image we perform the aforementioned

test sequentially for k = 1; 2; : : : ;K with Ĉ0(x) based on the sets Ik(x) and Ok(x). If a point fails one of the tests
it is rejected from further consideration.

Typically when one point passes the sequence of tests, so do many of its neighbors (C(x) is constant on the
interior of a mine and C0(x) approximates C(x)). To avoid considering many slightly di�erent versions of what
is essentially the same location, we cluster the candidates and pass only the cluster centroids to the next stage of
the process as a candidate mines.

3 Finding Convex Sets

Upon completion of the �rst phase of our algorithm, we are left with a list of candidate mine locations. For each
candidate we now seek the convex set containing the candidate location and maximizing the contrast measure.
In this section we develop a dynamic programming algorithm that, up to a discretization, computes the globally

optimal convex set containing the candidate. The computational burden of this approach is prohibitive at a rea-
sonable discretization, so we introduce a variation on dynamic programming that, when adapted to our algorithm,
allows a computationally feasible means of approximating the optimal convex set.
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Figure 2: A convex set containing x can be described in terms of the function r(�) giving the distance to the
boundary as a function of �. t(�) is the relative orientation of the tangent direction to the convex set at the
boundary point (�; r(�)).
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Figure 3: The �rst of the two conditions for a legal state is described pictorially. For convexity, t(�) must rotate
counter-clockwise as � increases. This places a constraint on r(�1), r(�2), t(�1), and t(�2).

3.1 Context-Free Representation of Convex Sets

The family of convex sets containing a �xed reference point is formidably large; before one can hope to �nd a
globally optimal member of this class, one must �rst represent or describe the class in a meaningful way. We
develop a grammatical description of the family of convex sets containing a �xed reference point x 2 <2. Although
this representation seems best suited for generating convex sets, it adapts quite naturally to the task of recognizing
them.

Let r(�) > 0 for 0 � � < 2� be a function describing the boundary of a convex set in polar coordinates
regarding x as the origin. Similarly, let ��=2 � t(�) � +�=2 for 0 � � < 2� describe the orientation of the
tangent to the convex set at r(�) measured so that +�=2 points in toward x and ��=2 points away from x. (see
Fig. 2).

It is clear that r(�) and t(�) de�ne a convex set containing x if and only if the non-relative tangent angle
t(�) + � is nondecreasing in � with r(0) = r(2�). We now describe a \grammatical" procedure for generating
convex sets containing x.

We begin by choosing the values of r(�) and t(�) at � = 0 and � = � | clearly there are no constraints on
these choices. We then choose the values of r(�); t(�) at � = �=2 and � = 3�=2, but now according to certain
constraints which will be described presently. The next level chooses r(�); t(�) for � 2 f�=4; 3�=4; 5�=4; 7�=4g and
we continue in this way so that after n levels of the derivation the boundary is speci�ed at 2n locations.
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Figure 4: A possible example of the production s� ! s��0; s��1. In the children states the two \inner" half-states
are shared and the two outer half-states are inherited

If we consider a piece of a convex boundary, say between �1 and �2, there are several constraints on the values
of r(�1); t(�1); r(�2); t(�2). Referring to Figure 3, it is clear that the line emanating from the (polar coordinate)
point (�1; r(�1)) in the t(�1) direction must intersect the ray emanating from x in the �2 direction at a distance
less than r(�2) from x. This constraint and the symmetrical constraint generated by reversing the roles of �1 and
�2 lead to the inequality

cos(t(�1)� (�2 � �1))

cos(t(�1))
�
r(�1)

r(�2)
�

cos(t(�2))

cos(t(�2) + (�2 � �1))
(5)

which must be satis�ed by any r(�1); r(�2); t(�1); t(�2) describing a piece of a convex boundary. With this in mind
we introduce the notion of a legal state, s, as a 4-tuple

s = (r(�1); t(�1); r(�2); t(�2)) (6)

satisfying Eqn. 5. In the grammatical representation we develop here, a legal state can \divide" into two \child"
states by choosing the values of r(�) and t(�) at some intermediate point �int, �1 < �int < �2. In doing so the
\inner" angle radius-tangent pair is shared while the \outer" angle radius-tangent pairs are inherited, that is,

(r(�1); t(�1); r(�2); t(�2)) �! (r(�1); t(�1); r(�int); t(�int)); (r(�int); t(�int); r(�2); t(�2))

(see Fig.4). If these productions are to result in a convex set it is clear that the child states must also be legal
states. In fact, this condition is necessary and su�cient. We will call such a production a legal production.

We de�ne our grammatical derivation on the diadic points of [0; 2�). To this end, we de�ne the index set f0; 1g�

to be the �nite length strings on f0; 1g and for each � 2 f0; 1g� we de�ne the state s� as the one corresponding to
the interval

(�1; �2) = (
2�b(�)

2j�j
;
2�(b(�) + 1)

2j�j
)

where j�j is the length of � and b(�) is the number in f0; 1; : : : ; 2n�1g obtained by viewing � as a binary number.
Our derivation then begins by choosing �; = (r(0); t(0); r(2�); t(2�)) with r(0) = r(2�) and t(0) = t(2�) and then
continuing recursively with legal productions of the form

s� ! s��0; s��1 (7)

for � 2 f0; 1g� (see Fig. 6).
If one were to terminate the derivation at level n and consider the possible collection of 2n states fs� : j�j = ng

produced by the grammar, one could associate a convex polygon with this partial derivation by connecting the
endpoints of the f(�k; r(�k)) : k = 0; 1; : : : ; 2n � 1g speci�ed by the fs�g (see Fig. 5). (It is simple to show that
this set is in fact convex.) By letting the derivation continue inde�nitely and taking the limit of the increasing
sequence of convex polygons as the result of the derivation, we have constructed a grammar for the entire family of
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Figure 5: The inside (I(s� )) and outside (O(s� )) regions used in computing the contrast measure for a terminal
state.

convex sets containing x. That the result of our derivation is a convex is clear since it is the limit of an increasing
sequence of convex sets. To see that any convex set can be obtained in this way, one need only observe that a
�xed convex set will \force" a sequence of productions which are all legal.

In practice, we seek realizable computer algorithms, so we do not carry out the construction inde�nitely.
Typically we stop after 5 or 6 levels, thus specifying 32 or 64 boundary locations and tangent angles for the convex
set. In the sequel we will denote this terminal level by N and call the state index set

� = f� 2 f0; 1g� : j�j � Ng

and the terminal state index set

�T = f� 2 � : j�j = Ng

A terminal state is one indexed by � 2 �T . We will write s = fs� : � 2 �T g for a convex set generated by our
grammar. In Fig. 6, the terminal states, (the lowest row of tree vertices) show an example of such a convex set.

3.2 The Recognition Algorithm

Suppose x 2 X is a reference point allegedly contained in some convex set depicted in our image f . We now look
at the problem of identifying the \best" convex set containing x.

For each terminal state (\pie slice"), s� 2 �T , let I(s� ) and O(s� ) be the regions depicted in Fig. 5. De�ne the
contrast measure C(s� ) in the usual way following Eqn. 1. For a convex polygon s = fs� : � 2 �T g, (a possible
derivation of our grammar) we de�ne the total contrast measure to be

C(s) =
X
�2�T

C(s� )

This de�nition is not the same as the \true" contrast we would achieve by using Eqn. 1 on the interior and exterior
of the entire convex set since we allow the mI ,mO, and s2 to vary from state to state. It should rather be taken
as a more easily optimizable approximation to the true contrast.

We now demonstrate an algorithm that produces a global maximum of the contrast measure over the subset
of convex sets created by stopping our grammatical derivation after N levels.
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Figure 6: The tree-like derivation of a convex set. Each tree node is labeled with its index. The bottom row of
boxes denote the radius-tangent spaces. Each box corresponds to an angle, �, at which the radius and tangent are
speci�ed. In the �gure that is � = 2�k=8 for k = 0; 1; : : : ; 7 (from left to right). In the grammatical derivation, the
choice of state at level 0, (s;), �xes the radius and tangent at � = 0 (the point in the k = 0 box). The production
s; ! s0; s1 speci�es the radius and tangent at � = � (the point in the k = 4 box) etc.

For each legal terminal state, s� , we begin by computing C(s� ) for each legal value of s� . For each s� at the
penultimate level (j�j = N � 1) there are a number of possible legal productions following from s�. Each one of
these production could be scored by summing the contrast scores of the left and right children. We de�ne the
optimal contrast for s�, C(s�), to be the maximum contrast sum over all possible productions:

C(s�) = max
s�!s��0;s��1

C(s��0) + C(s��1) (8)

and we will \remember" the optimizing production associated with each s�. It is clear that, if s� occurs in our
derivation, then C(s�) is the maximum contribution of children of s� to the contrast measure. This reasoning
applies equally well to states at all levels of our grammar. If for all nonterminal states s� we de�ne C(s�)
recursively by Eqn. 8, then we can compute our optimal contrast measure at progressively earlier states (higher
levels in Fig. 6) of the grammar. Thus for any s�, C(s�) is the maximum contribution of all progeny of s� to the
contrast measure. Ultimately we will be able to compute C(s;), the maximum constrast measure over all legal
derivations following from s;. The optimal contrast over all derivable convex sets is then

C� = max
s;

C(s;) (9)

Having found the optimal contrast, it is a simple matter to recover the optimal convex set. The optimal root state
is given by

s�; = argmax
s;

C(s;)

and, since for every state we store the optimal production rule following from that state, we need only trace these
optimal productions from s�; down to the terminal level. The sequence of optimal terminal states then gives the
optimal convex set.
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As described, the algorithm cannot be performed on a computer since the maximization of Eqn. 9 involves an
in�nite number of possible productions. We could, however, discretize the state spaces and perform the algorithm
exactly as stated. Although simple enough in principle, the computational burden of this discrete approach would
be substantial, even for relatively coarse discretization. If we let A be the number of terminal angles, (A = 2N ),
andH the number of discretized radius-tangent pairs at each angle, then the algorithm is easily seen to be O(AH3).
Allowing merely 10 di�erent radii and tangents for each angle already leads to tens of millions of operations. Some
more e�cient way of carrying out, or approximating, this computation is necessary if we want our approach to be
computationally feasible.

3.3 Coarse-to-Fine Dynamic Programming

Consider the familiar dynamic programming scenario depicted in the upper left of Fig. 7. Associated with
each arc in the graph is a cost, and we seek the minimal cost path from the start state to the �nish. The familiar
dynamic programming algorithm solves this problem by recognizing that the optimal path from the start state to
any interior state at level l must be an extension of some optimal path from the start state to a state at level l� 1
by an arc connecting the state at level l � 1 to a state at level l. Imagine a situation where there are so many
di�erent states that it is infeasible to perform full-edged dynamic programming. We propose a modi�cation that
in many cases produces the same optimal path in considerably less time.

We build from our original graph, a coarse graph by grouping states together into what we will call \super-
states". For the sake of argument, we begin by dividing the states at each level into two super-states. In our coarse
graph, any two super-states are connected if any pair in their cross product has an arc (upper right of Fig. 7).
Similary, the cost of an arc between two super-states is the minimal cost of the arcs in the cross product. We then
can �nd the minimum cost path through the coarse graph with the usual dynamic programming technique with
very little computational e�ort.

Along this optimal path we now re�ne the coarse graph, say, by splitting each super-state into two smaller
super-states. With this new collection of super-states we rebuild the connectivity and arc scores by the same rules
as before and perform dynamic programming on this new less coarse graph. In general, this new optimal path
(middle left of Fig. 7) will not be a re�ned version of the previous optimal path and might visit some of the coarser
super-states. This process continues until we �nd an optimal path that lies entirely at the original discretization
(lower right of Fig. 7). When this has happened, we have found the optimal path through the original graph.
Our optimal path by de�nition beats any other path in the �nal coarse graph. However, since the path scores in
the coarse graph are better than their original graph counterparts, we have found the optimal path through the
original graph as well.

There is no guarantee that this algorithm takes less time to compute the optimal path than does the regular
dynamic programming algorithm. For the algorithm to function well, the re�ning process must involve a minimum
of iterations. This requires that the super-states consist of collections of \similar" states, so that the optimistic
scores we use for arcs in the coarse graph are not far from the true scores of the constituent arcs.

In many applications the signi�cant computational cost involved in computing the minimum cost between two
super-states will defeat the purpose of coarse-to-�ne dynamic programming. We remark that our algorithm will
produce the optimal path through the graph when we replace this minimum by a lower bound for the minimum
as long as the lower bound collapses to the true cost for singleton super-states. Choosing this lower bound is a
matter of great practical importance. An excessively \loose" lower bound can cause the algorithm to explore much
irrelevant territory through unwarranted optimism in the scoring of a coarse path.

With a simple modi�cation this algorithm can be extended to cover cases in which the state space is continuous.
In this situation, our super-states are given by intervals rather than �nite sets and the lower bounds which
represent arc scores must be taken over the cross product of two such intervals. Each iteration of the algorithm
now involves an application of dynamic programming followed by a re�nement of the collection of optimal intervals
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Figure 7: The upper left �gure is the original dynamic programming setup. The 5 remaining �gures show a possible
progression of our coarse-to-�ne dynamic programming algorithm. The optimal path (shown in bold lines) in the
�nal �gure in the lower right must also be the optimal path in the original lattice.
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(state regions) into collections of sub-intervals and a recomputation of the arc scores. Thus each iteration of he
algorithm generates a sequence of state intervals. It can be shown, under suitable assumptions, that the state
intervals converge to the optimal states as the algorithm is iterated.

3.4 The Recognition Algorithm Revisited

We now combine this continuous coarse-to-�ne dynamic programming with our convex set recognition algo-
rithm. We begin by partitioning the radius-tangent spaces associated with each terminal angle of our convex set.
Let rmin and rmax be the smallest and largest radii we are willing to consider and tmin = ��=2; tmin = �=2. We
partition the set [rmin; rmax) � [tmin; tmax) into a collection of similar rectangles as in the top of Fig. 8. At each
vertex of the tree we form the super-states which are pairs of radius-tangent rectangles. Each super-state contains
a left rectangle and a right rectangle taken from the corresponding left and right radius-tangent spaces. Following
the discussion of Section 3.3, we would like to score each super-state in the most optimistic way. That is, if s�
denotes a super-state,

C(s� ) = max
s�2s�
s� legal

C(s� ): (10)

Using this contrast measure on super-states, we can compute the (optimistic) optimal contrast, C�, by following
the recursion of Eqn. 8 and using Eqn. 9. This optimal contrast is achieved by a sequence of radius-tangent
rectangles as depicted in Fig. 8. We now re�ne only these rectangles, shown in the bottom of Fig. 8. We again
form our super-states as before on the new partition of the radius-tangent spaces and score the new super-states
through Eqn. 10. Again we �nd the (slightly less optimistic) optimal contrast using the dynamic programming
recursion and the associated optimal sequence of radius-tangent rectangles is depicted in the bottom of Fig. 8.
This process continues until all of the radius-tangent rectangles along the optimal path have been re�ned to a
su�ciently small size. At this point we take this sequence as an approximation to our optimal convex set.

The actual computation of Eqn. 10 is formidable and the computational burden of �nding this maximum would
defeat the purpose of coarse-to-�ne dynamic programming. As remarked in the previous section, we can substitute
an upper bound for the maximum of Eqn. 10 as long as this upper bound approaches the true maximum as the
super-states become small. We have used the upper bound

Cupper(s� ) = 1fs� contains a legal stateg max
s�2s�

C(s� ): (11)

The characteristic function is easy to compute using Eqn. 5 and we can easily compute the maximum since it
depends only on the two radii ranges. We substitute Eqn. 11 for Eqn. 10 in the actual dynamic programming
calculations with the observation that they di�er by less and less as the optimal radius-tangent rectangles shrink.

4 Finding Optimal Mine Hypotheses

Once we have a good estimate of the boundary of a convex set, it is a simple matter to re�ne this estimate using
the knowledge contained in our shape library. For each possible shape type (circle, ellipse, parallelogram, etc.) we
form an initial estimate of the parameters, �, of the shape using the boundary estimate. For instance, for the circle
we would estimate a center and radius. We then de�ne I(�) to be the interior of the shape de�ned by � and O(�)
to be a narrow \band" around the shape and de�ne the contrast measure C(�) in the usual way following Eqn. 1.
We then use a local optimization technique to �nd the best parameters for each member of the shape library
subject to some simple constraints prohibiting degeneracy of the shape. The shape type and parameter estimate
maximizing the contrast measure is taken to be our optimal hypothesis, and the optimal contrast measure is our
estimate of C(x). We reject the \mine present" hypothesis if our estimate of C(x) fails to exceed our threshold � .
Otherwise we classify according to the optimal shape type.
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Figure 8: Coarse-to-Fine dynamic programming combined with convex set recognition. In the top �gure the
sequence of radius-tangent rectangles having maximal optimistic contrast is shown in dark. In the bottom �gure
we have re�ned the radius-tangent spaces by partitioning the optimal radius-tangent rectangles into four children.
The bottom �gure shows the optimal radius-tangent rectangles at this new discretization. This process is continued
until the optimal radius-tangent rectangles have reached uniformly a su�ciently �ne level of discretization.
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5 Experimental Results

We present the results of our algorithm applied to images taken from three di�erent data sets demonstrating a
variety of scenarios. The mine objects, although not actual mines, encountered in these images are representative
of the size, shape and reectivity one would encounter with genuine mines.

Our �rst example describes the performance of our algorithm on a set of 10 256x256 images depicting mines
in dunes taken from the \amdas" data set. We knew a priori that the images contained only circular mines so
our shape library is limited to a single example here. We chose values rmax = 8, Rmin = 20, and Rmax = 25
(Section 2), thereby presuming that mines we encounter have radii between 8 and 20 pixels. These values allow
some latitude in the placement of our mask of Fig. 1 leading to candidate detections. At each location in the image
we then performed a sequence of 5 tests comparing regions of size: 2,4,8,16,32 pixels. These tests attempted to
defeat the hypothesis that the contrast was greater than or equal to 2.25 using the methods of Section 2. Although
this \candidate threshold" is in principle the same as the \�nal threshold" (�), the greater exibility achieved by
the independent thresholds leads to slightly better experimental results. Each of these tests was performed at a
signi�cance level of .05. An illustrative image and the results of the sequence of tests applied to the image are
shown in Fig. 9. The test-response image (right) is formed of six possible grey levels representing the number of
tests a point passed 0; 1; : : : ; 5 (brighter means more tests passed). The set of image locations passing all 5 tests is
then clustered following Section 2 and the centroids of these clusters are shown in the upper-left panel of Fig. 10.
In producing these clusters we rule that two points are in the same cluster if their \Manhattan" distance is less
than 10 pixels.

We next estimate the optimal convex set containing each candidate using the method of Section 3. We
represented a convex set by choosing 32 possible (radius,tangent) pairs (j�T j = 32). The ultimate discretization
we seek is one in which a radius-tangent rectangle is �=16 radians by about 1.5 pixels. Fig. 10 (upper-right) shows
the optimal convex set estimated for each of our candidates. Note that some of these estimates are only \almost"
convex due to our stopping the algorithm once a �xed degree of precision is obtained and the approximation to
our upper bound function of Eqn. 11. Although it is reasonable to reject some candidates at this point based
on our approximation to the optimal contrast, we have found that, having already invested signi�cant e�ort in
a particular candidate, it is worthwhile to complete the shape estimation phase before any further rejection is
performed.

We then used these convex sets to estimate centers and radii for the one shape under consideration: the circle.
We optimize the contrast measure over the (center, radius) parameters comparing the interior of the circle with
the concentric bounding annulus having about 3 times the area as the circle. The optimal circles are then depicted
in Fig. 10 (lower-left) with the bounding annuli used in computing the contrast measure. In our experience, the
contrast measure, when viewed as a function of the shape parameters, is fraught with many local maxima. Thus
a good choice of initial parameters is indispensable to this �nal optimization stage. We have encountered only a
few examples in which the �nal phase has recovered from a poor initial convex set estimate further reinforcing our
belief in the necessity of global optimization in scene-analysis problems. Finally, Fig. 10 (lower-right) shows only
the mine hypotheses exceeding our �nal threshold 3.5.

We repeated this experiment for a second set of 10 images containing mines in shallow water and a representative
example is shown in Fig. 11. These images were considerably more di�cult than the previous scenario due to the
decreased contrast and reection from the water. The parameters were exactly as before except that the candidate
and �nal thresholds were 2.0 and 1.9.

A �nal set of 2 720x480 images deals with a more complicated scenario in which a variety of di�erent shapes
are possible falling under the general categories of ellipse and parallelogram. Unlike the previous two examples,
in these images a mine appears as light pixels on a dark background. The greater range of shape sizes demands a
less opinionated choice of parameters in our candidate detection phase where we have chosen rmax = 8, Rmin = 40,
and Rmax = 45. The candidate threshold was 2.25. Evidently, this and the uneven texture of the background
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Figure 9: Example 1. Left: The original image Right: The darkness at a particular location indicates how many
of the tests were passed at that location. The brightest grey-level indicates all tests were passed and the darkest
grey-level means no tests were passed.

lead to many more candidate locations as depicted in Fig. 12 (top). The optimal convex sets containing these
candidates are displayed in Fig. 12 (bottom). Due to the larger area being considered in these estimates, our �nal
resolution is less re�ned than in the previous examples | the radii are estimated to ranges of about 3 pixels. In
performing the �nal shape estimates, we now optimize over both the shape types: ellipse and parallelogram. For
added security we search for parallelograms starting from two di�erent initial parameter choices corresponding to
a rotation by 90 degrees. The �nal shape estimates and the shape hypotheses exceeding the minimal contrast of
2.75 are shown in Fig. 13
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Figure 10: Example 2. Top Left: The candidate locations Top Right: Optimal convex sets Bottom Left: Optimal
circles Bottom Right: Best surviving hypotheses after thresholding
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Figure 11: Example 2. Top Left: The candidate locations Top Right: Optimal convex sets Bottom Left: Optimal
circles Bottom Right: Best surviving hypotheses after thresholding
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Figure 12: Example 3. Top: The candidate locations Bottom: Optimal convex sets
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Figure 13: Example 3. Top: The optimal shapes Bottom: Surviving hypotheses after thresholding.
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